Cellular repair of oxidatively induced DNA base lesions is defective in prostate cancer cell lines, PC-3 and DU-145.

نویسندگان

  • Andrzej R Trzeciak
  • Simon G Nyaga
  • Pawel Jaruga
  • Althaf Lohani
  • Miral Dizdaroglu
  • Michele K Evans
چکیده

Mutagenic oxidative DNA base damage increases with age in prostatic tissue. Various factors may influence this increase including: increased production of reactive oxygen species, increased susceptibility to oxidative stress, alterations in detoxifying enzyme levels or defects in DNA repair. Using liquid chromatography/mass spectrometry and gas chromatography/mass spectrometry, we show increased levels of oxidative DNA base lesions, 8-hydroxyguanine (8-oxoG), 8-hydroxyadenine (8-oxoA) and 5-hydroxycytosine (5OHC) over the baseline in PC-3 and DU-145 prostate cancer cells following exposure to ionizing radiation and a repair period. Nuclear extracts from PC-3 and DU-145 prostate cancer cell lines are defective in the incision of 8-oxoG, 5OHC and thymine glycol (TG) relative to the non-malignant prostate cell line. Consistent with reduced expression of OGG1 2a, incision of 8-oxoG is reduced in PC-3 and DU-145 mitochondrial extracts. We also show a correlation between severely defective incision of TG and 5OHC and reduced levels of NTH1 in PC-3 mitochondria. The antioxidant enzymes, glutathione peroxidase (GPx), catalase and superoxide dismutases (SOD1, SOD2), have altered expression patterns in these cancer cell lines. Genetic analysis of the OGG1 gene reveals that both PC-3 and DU-145 cell lines harbor polymorphisms associated with a higher susceptibility to certain cancers. These data suggest that the malignant phenotype in PC-3 and DU-145 cell lines may be associated with defects in base excision repair and alterations in expression of antioxidant enzymes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defective DNA strand break repair after DNA damage in prostate cancer cells: implications for genetic instability and prostate cancer progression.

Together with cell cycle checkpoint control, DNA repair plays a pivotal role in protecting the genome from endogenous and exogenous DNA damage. Although increased genetic instability has been associated with prostate cancer progression, the relative role of DNA double-strand break repair in malignant versus normal prostate epithelial cells is not known. In this study, we determined the RNA and ...

متن کامل

Investigation of Histone Lysine-Specific Demethylase 5D (KDM5D) Isoform Expression in Prostate Cancer Cell Lines: a System Approach

Background: It is now well-demonstrated that histone demethylases play an important role in developmental controls, cell-fate decisions, and a variety of diseases such as cancer. Lysine-specific demethylase 5D (KDM5D) is a male-specific histone demethylase that specifically demethylates di- and tri-methyl H3K4 at the start site of active genes. In this light, the aim of this study was to invest...

متن کامل

Capacitive Hyperthermia as an Alternative to Brachytherapy in Treatment of Human Prostate Cancer Cell

Introduction: The aim of this study was the evaluation of induced DNA damages of human prostate cancer cells, DU-145, treated with a combination of radiofrequency capacitive hyperthermia (HT) and teletherapy (EBRT) compared to a combination of teletherapy with high dose rate brachytherapy (BR).   Materials and Methods: DU-145 cells were cultured as spheroids ...

متن کامل

Clonogenic survival and apoptosis of prostate cancer cells irradiated with X-rays or carbon ions

It is well known that in general, an increased oxidative stress is found in cancer cells (e.g. [1, 2]). Low and high LET radiations induce reactive oxidative species and thus increase the oxidative stress even more. Different cancer cells not only do repair the DNA damage differently, they also cope differently with oxidative stress. Increasing the oxidative stress before irradiation might poss...

متن کامل

Profiling of angiogenic cytokines produced by hormone- and drug-refractory prostate cancer cell lines, PC-3 and DU-145 before and after treatment with gossypol.

In this study, we aimed to investigate the angiogenic cytokine profiles of hormone- and drug-refractory prostate carcinoma cell lines, PC-3 and DU-145. We also studied the effect of gossypol, a natural polyphenolic cotton-seed extract, on the angiogenic cytokine profile of these cell lines. XTT cell proliferation assay was used for the assessment of cytotoxicity. For apoptosis, both histone-DNA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Carcinogenesis

دوره 25 8  شماره 

صفحات  -

تاریخ انتشار 2004